Enantioselectivity of projection neurons innervating identified olfactory glomeruli.
نویسندگان
چکیده
Projection neurons (PNs) with arborizations in the sexually dimorphic "lateral large female glomerulus" (latLFG) in the antennal lobe (AL) of the moth Manduca sexta previously were shown to respond preferentially to antennal stimulation with (+/-)linalool, a volatile compound commonly emitted by plants. In the present study, using intracellular recording and staining techniques, we examined the responsiveness of latLFG-PNs to the enantiomers, (+)linalool and (-)linalool and found that (1) latLFG-PNs are more responsive to antennal stimulation with (+)linalool than with (-)linalool, (2) PNs with arborizations in a glomerulus adjacent to the latLFG are preferentially responsive to (-)linalool, and (3) PNs with arborizations confined to other glomeruli near the latLFG are equally responsive to both enantiomers of linalool. Structure-activity studies showed that the hydroxyl group in this tertiary terpene alcohol is the key feature of the molecule determining the response of enantioselective PNs to linalool. In contrast, the responses of non-enantioselective PNs are less dependent on the alcoholic functionality of linalool. Our findings show that PNs innervating a uniquely identifiable glomerulus respond preferentially to a particular enantiomer of an odor substance. Moreover, PNs with arborizations in a glomerulus adjacent to the latLFG, although less sensitive than latLFG-PNs to linalool, respond preferentially to the opposite enantiomer, demonstrating that information about stimulus-absolute configuration can be encoded in different olfactory glomeruli.
منابع مشابه
The olfactory pathway of adult and larval Drosophila: conservation or adaptation to stage-specific needs?
Tracing of olfactory projections based on odorant receptor expression has led to an almost complete receptor-to-glomerulus map in adult Drosophila. While most of the glomeruli may be involved in processing of food odors, others appear to be more specialized, for example, responding to CO(2) or to pheromonal cues. Recent studies have shed light on signal processing in the antennal lobe and in hi...
متن کاملGlomerular Maps without Cellular Redundancy at Successive Levels of the Drosophila Larval Olfactory Circuit
BACKGROUND Drosophila larvae possess only 21 odorant-receptor neurons (ORNs), whereas adults have 1,300. Does this suggest that the larval olfactory system is built according to a different design than its adult counterpart, or is it just a miniature version thereof? RESULTS By genetically labeling single neurons with FLP-out and MARCM techniques, we analyze the connectivity of the larval olf...
متن کاملDedicated olfactory neurons mediating attraction behavior to ammonia and amines in Drosophila.
Animals across various phyla exhibit odor-evoked innate attraction behavior that is developmentally programmed. The mechanism underlying such behavior remains unclear because the odorants that elicit robust attraction responses and the neuronal circuits that mediate this behavior have not been identified. Here, we describe a functionally segregated population of olfactory sensory neurons (OSNs)...
متن کاملActivity-Dependent Plasticity in an Olfactory Circuit
Olfactory sensory neurons (OSNs) form synapses with local interneurons and second-order projection neurons to form stereotyped olfactory glomeruli. This primary olfactory circuit is hard-wired through the action of genetic cues. We asked whether individual glomeruli have the capacity for stimulus-evoked plasticity by focusing on the carbon dioxide (CO2) circuit in Drosophila. Specialized OSNs d...
متن کاملOlfactory Receptor and Neural Pathway Responsible for Highly Selective Sensing of Musk Odors
Musk odorants are used widely in cosmetic industries because of their fascinating animalic scent. However, how this aroma is perceived in the mammalian olfactory system remains a great mystery. Here, we show that muscone, one musk odor secreted by various animals from stink glands, activates a few glomeruli clustered in a neuroanatomically unique anteromedial olfactory bulb. The muscone-respons...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 24 11 شماره
صفحات -
تاریخ انتشار 2004